TRAFFIC STUDY

THE VILLAS AT ORANGE LAWN 305 NORTH RIDGEWOOD ROAD BLOCK 1304 – LOT 6

TOWNSHIP OF SOUTH ORANGE VILLAGE ESSEX COUNTY, NEW JERSEY

SUBMITTED TO:

BNE REAL ESTATE GROUP 16 MICROLAB ROAD, SUITE A LIVINGSTON, NJ 07039

> August 16, 2016 Revised October 5, 2016

> > PREPARED BY:

HAMAL ASSOCIATES, INC.
TRAFFIC CONSULTANTS
19 PORTER ROAD
WEST ORANGE, NEW JERSEY 07052
NJ CERT. OF AUTH. NO. 24GA27922200
(973) 669-3736
FAX (973) 325-0304

Harold K. Maltz, P.É.

N.J. P.E. Lic. No. 20986

TRAFFIC STUDY

THE VILLAS AT ORANGE LAWN 305 NORTH RIDGEWOOD ROAD BLOCK 1304 – LOT 6

TOWNSHIP OF SOUTH ORANGE VILLAGE ESSEX COUNTY, NEW JERSEY

SUBMITTED TO:

BNE REAL ESTATE GROUP 16 MICROLAB ROAD, SUITE A LIVINGSTON, NJ 07039

> August 16, 2016 Revised October 5, 2016

PREPARED BY:

HAMAL ASSOCIATES, INC.
TRAFFIC CONSULTANTS
19 PORTER ROAD
WEST ORANGE, NEW JERSEY 07052
NJ CERT. OF AUTH. NO. 24GA27922200
(973) 669-3736
FAX (973) 325-0304

TABLE OF CONTENTS

			<u>PAGE</u>
I.	INT	RODUCTION	1
II.	EXI	STING CONDITIONS	4
III.	DA	TA COLLECTION AND EXISTING TRAFFIC	5
IV.	TRA	AFFIC PROJECTIONS AND ASSIGNMENTS	10
V.	ANA	ALYSIS	14
	A.	N. RIDGEWOOD ROAD & CLUB DRIVE	14
	B.	REDMOND ROAD & CLUB DRIVE	17
	C.	TOWNHOUSE SITE CIRCULATION & PARKING	19
	D.	ORANGE LAWN TENNIS CLUB PARKING AND IMPROVEMENTS SUMMARY	21
VI.	CON	ICLUSIONS	22
	APP	ENDIX	

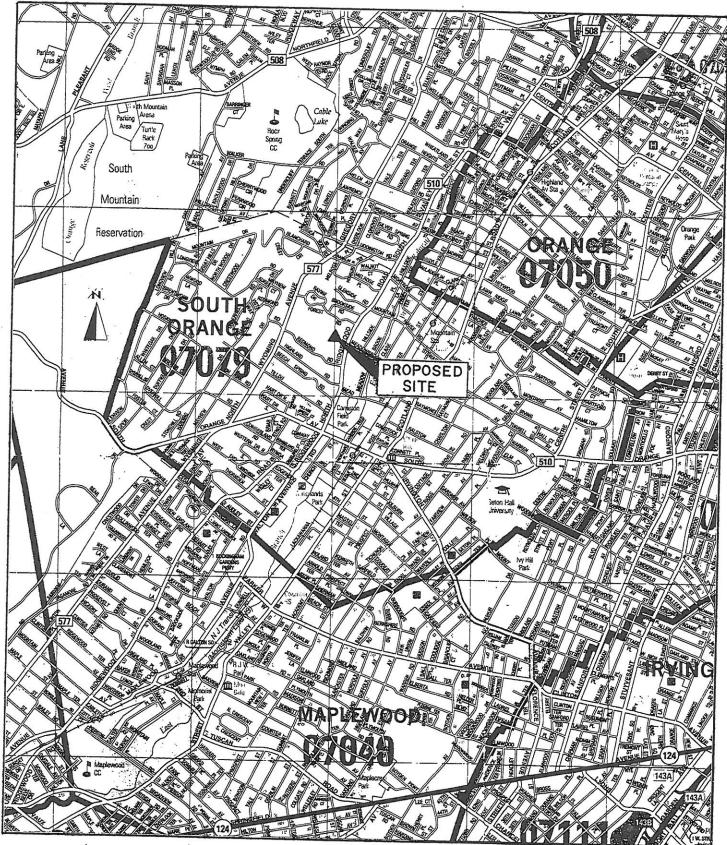
LIST OF EXHIBITS

EXHIBITS	TITLE	PAGE
1	PROJECT LOCATION MAP	3
2	2016 EXISTING PEAK HOUR TRAFFIC VOLUMES	8
3	2018 EXISTING PEAK HOUR TRAFFIC VOLUMES WITH BACKGROUND TRAFFIC GROWTH	9
4	SITE GENERATED PEAK HOUR TRIP ASSIGNMENTS	12
5	2018 PROPOSED FULL BUILD PEAK HOUR TRAFFIC VOLUMES.	13
	<u>LIST OF TABLES</u>	
EXHIBITS	TITLE	PAGE
1	TRAFFIC PROJECTIONS	10
2	PEAK HOUR CAPACITY ANALYSIS – N. RIDGEWOOD ROAD & CLUB DRIVE.	16
3	PEAK HOUR CAPACITY ANALYSIS – REDMOND ROAD &	10

I. INTRODUCTION

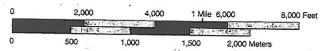
Villas at Orange Lawn, LLC (Applicant - Villas) has proposed the construction of twenty (20), three bedroom townhouse units in ten, 2.5 story buildings, located in the eastern section of the Orange Lawn Tennis Club site (Club), in the Township of South Orange Village, Essex County, New Jersey. The Club site (Block 1304, Lot 6) is situated just west of North Ridgewood Road and between Redwood Road and Forest Road. The townhouse project is to be constructed on a 4.6 acre section of land being sold/subdivided by the Club to the Villas. A total of 80 parking spaces are proposed on the residential site.

Access for the townhouse project will be through a cul-de-saced (hammerhead terminus design) roadway that will intersect the Club's existing access drive that extends to N. Ridgewood Road. As part of the project, some widening of the N. Ridgewood Road access drive will be performed between the vicinity of the townhouse site drive and N. Ridgewood Road. Roadway access is also available for the townhouse residents through another access drive traversing the Club site to Redmond Road.


The tennis club facility will continue its current operations, with no changes to events, activities, etc., that would affect site trip generation. As the Club currently uses the area where the townhouse project is to be built for event overflow parking, the site plan also identifies revised paved and overflow parking areas on the remaining Club site, to compensate for this displacement. Primarily due to the foregoing noted parking area changes, the Club is a co-applicant in this project.

In view of the proposed residential development, the Villas has retained the firm of Hamal Associates, Inc. (HMA) to determine the traffic impacts of the proposed residential site development at the intersections of; 1) N. Ridgewood Road & the Club Drive, and 2) Redmond Road & the Club Drive, during the weekday am and pm street peak hours and identify mitigation, if necessary. HMA will also evaluate site access, on-site circulation, parking quantity and dimensions, based on the NJ Residential Site Improvement Standards (RSIS).

This revised traffic study reflects traffic counts performed in September 2016, when schools were in session. The original traffic study (dated August 16, 2016) utilized traffic counts performed during the


summer, when schools were closed. To compensate for lower summer traffic flows, a 10% increase was applied to the 2016 summer peak hour traffic volumes. It is noted that the summer peak hour volumes, with 10% volume increase, were similar in magnitude to the September 2016 peak hour volumes.

The purpose of this report is to present the data gathered, methods of analysis and summarize the subsequent impacts and findings identified.

Hagstom Map Company, Inc., 36-36 33rd Street, Long Island City, New York 11106

EXHIBIT 1 PROJECT LOCATION MAP

II. EXISTING CONDITIONS

The townhouse/Club site is located in the north-central area of the Township of South Orange Village, just west of N. Ridgewood Road and between Redwood Road and Forest Road. The Club site's two existing access drives are to remain unchanged. One access drive intersects N. Ridgewood Road, as a T-intersection, approximately 220 feet south of Forest Road. A second access drive intersects Redmond Road, as a T-intersection, approximately 725 feet west of N. Ridgewood Road. The two Club access drives are inter-accessible on-site. Existing development in the area consists of residential properties, with Cameron Field Park and South Orange Middle School located nearby to the south along the east side of N. Ridgewood Road.

Within the study area, N. Ridgewood Road is a north-south municipal roadway having a 28+/- foot wide pavement, with curbing and sidewalks along each side of the road. A posted 25 mph speed limit is in effect. The roadway alignment is generally straight and relatively level. One travel lane is provided in each direction with no parking permitted on either side of the roadway. N. Ridgewood Road extends into the Township of West Orange, to the north, where it changes name to S. Valley Street. To the south, N. Ridgewood Road crosses South Orange Avenue at a signalized intersection, and continues south eventually entering the Township of Maplewood. The Township Master Plan and the NJDOT classify N. Ridgewood Road as an urban minor arterial.

Redmond Road is a short, east-west municipal roadway that extends between 'Stop' controlled intersections at N. Ridgewood Road, to the east, and N. Wyoming Avenue, to the west. A 25 mph speed limit is in effect and curbing and sidewalk are present along each side of the road. Redmond Road traverses a downgrade to the east and has several horizontal curves along its length. Within the vicinity of the Club access drive intersection, Redmond Road is approximately 26 feet wide. Each side of Redmond Road is posted for 2 Hour Parking, 8 AM – 12 PM, Except Weekends and Holidays.

III. DATA COLLECTION AND EXISTING TRAFFIC

In order to determine the impact of any proposed development upon the identified roadway system, the present day condition must be established. To this end, the site plan and relevant statistics for the proposed project were obtained from the site engineer (Casey & Keller, Inc.) and the Applicant. The yearly background traffic growth rates (1.50%-N. Ridgewood Rd, 1.00% Redmond Rd), for the study area roads, were obtained from the NJDOT. HMA performed field surveys to establish geometrics, lane arrangements/widths, traffic control, parking restrictions/regulations and speed limits. HMA also contacted the Township Planning/Zoning Office to determine if there were any nearby projects proposed/approved that might affect our traffic study area. We were advised by the Township Engineer that there are no 'other' projects that would impact our study area.

Supplementing the above, HMA conducted manual traffic counts (7-9am, 4-6pm) on Thursday – September 15, 2016, and on Saturday – September 10, 2016, at the intersections of N. Ridgewood Road with the Club Drive and Redmond Road with the Club Drive. The traffic counts were performed on a normal business day, the school year was in session, weather was good and all roadways were open. The data was compiled in 15 minute intervals by traffic movement to permit identification of the street peak hours of operation and determination of the peak hour factors required in the analysis of roadway intersection capacity. A tabulation of truck/bus traffic was also kept for use in the capacity analysis. The traffic count data was tabulated onto standard forms and is presented in the Appendix (see A-1 thru 6). The results of these surveys indicated a weekday am peak hour of 7:30-8:30, a pm peak hour of 5:00-6:00 and a Saturday peak hour of 10:45-11:45 am. Exhibit 2 summarizes the existing weekday 2016 peak hour vehicular volumes at the noted intersections.

Exhibit 3 expands the 2016 existing peak hour volumes by the NJDOT annual background traffic growth rates (See A-31) through 2018, which is the anticipated year of completion of the project.

For the peak hours noted, a review of existing traffic volumes indicated the conditions within the study area as follows:

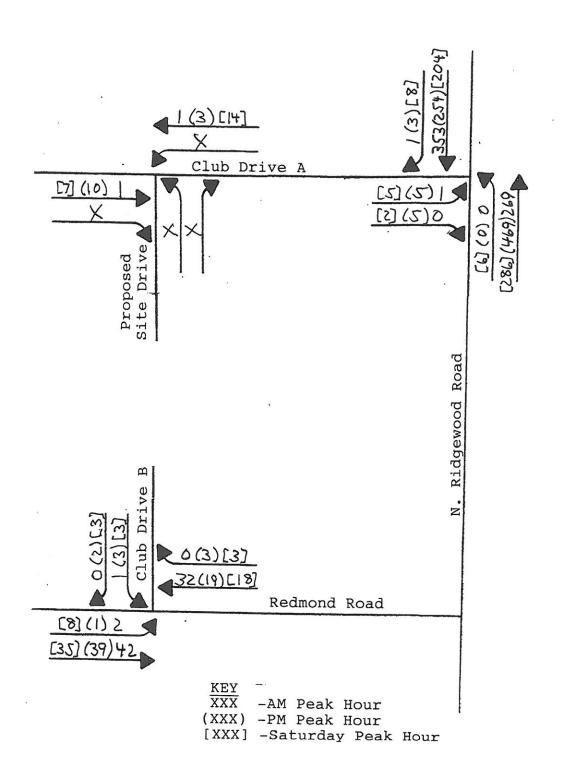
AM PEAK HOUR (7:30-8:30)

- 1. Two-way traffic flow on N. Ridgewood Road, at the Club Drive intersection, was 623 vehicles with the flow heavier in the southbound travel direction (269 vehs. NB, 354 vehs. SB). Numerous gaps in the traffic flow were observed in each travel direction of N. Ridgewood Road, which resulted in short delays to vehicles entering/exiting the Club Drive. Traffic flow to/from the Club Drive was very low, equaling 1 vehicle inbound and 1 vehicle outbound. This intersection operated in a free flowing manner.
- 2. Two-way traffic on Redmond Road, at the Club Drive intersection, was extremely light equaling only 76 vehicles (44 vehs. EB, 32 vehs. WB). Only 1 vehicle exited the Club Drive, and only 2 vehicles entered this drive. This intersection operated in a free flowing manner.

PM PEAK HOUR (5:00-6:00)

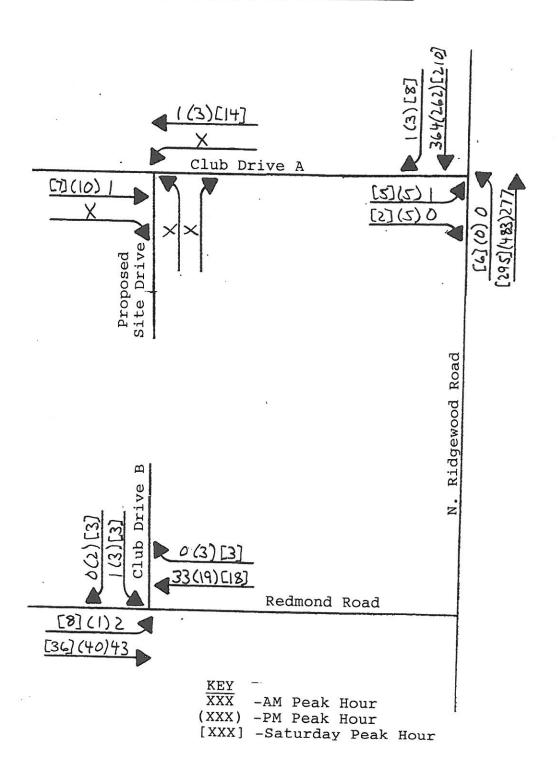
- 1. Two-way traffic flow on N. Ridgewood Road, at the Club Drive intersection, was 726 vehicles with the flows more heavily oriented northbound (469 vehs. NB, 257 vehs. SB). Numerous gaps in the traffic flow were again observed in each travel direction of N. Ridgewood Road. Traffic flow to/from the Club Drive was very low, with only 5 vehicles outbound and 3 vehicles entering. This intersection operated in a free flowing manner.
- 2. Two-way traffic activity on Redmond Road, at the Club Drive intersection, was again extremely light, equaling only 62 vehicles (40 vehs. EB, 22 vehs. WB). Only 5 vehicles exited the Club Drive, and only 4 vehicles entered this drive, in the entire peak hour. This intersection operated in a free flowing manner.

SATURDAY PEAK HOUR (10:45-11:45 AM)


Two-way traffic flow on N. Ridgewood Road, at the Club Drive intersection, was 504 vehicles
with the flows more heavily oriented northbound (292 vehs. NB, 204 vehs. SB). Numerous gaps
in the traffic flow were again observed in each travel direction of N. Ridgewood Road. Traffic

flow to/from the Club Drive was very low, with only 7 vehicles outbound and 14 vehicles entering. This intersection operated in a free flowing manner. Saturday peak hour traffic volumes were lower than either of the weekday peak hours.

2. Two-way traffic activity on Redmond Road, at the Club Drive intersection, was again extremely light, equaling only 64 vehicles (43 vehs. EB, 21 vehs. WB). Only 6 vehicles exited the Club Drive, and only 11 vehicles entered this drive, in the entire peak hour. This intersection operated in a free flowing manner.


EXHIBIT 2

2016 EXISTING PEAK HOUR TRAFFIC VOLUMES

EXHIBIT 3

2018 EXISTING PEAK HOUR TRAFFIC VOLUMES WITH BACKGROUND TRAFFIC GROWTH

IV. TRAFFIC PROJECTIONS AND ASSIGNMENTS

As part of any analysis, site generated traffic must be assigned to the surrounding roadway system. In performing the impact analysis for this project, traffic projections were prepared based on the residential townhouse use proposed for the site. These projected volumes were compiled for the am and pm weekday street peak hours of operation and inbound/outbound traffic patterns. The proposed development is to have a total of 20 townhouse units. The traffic volume projections were based on trip generation rates, for the total number of units, developed by the Institute of Transportation Engineers (ITE) and as published in their text, Trip Generation-9th Edition (Land Use Code 230 - Residential Condominium/Townhouse – See Appendix A-7, 8). Table 1 summarizes the very small magnitude of projected trip generation for this site, which is 14 trips in the am peak hour, 16 trips in the pm peak hour and 9 trips in the Saturday peak hour (total two-way). It is noted that the NJ Residential Site Improvement Standards (RSIS) require the use of the ITE Trip Generation publication for calculating peak hour trips for any residential land use.

TABLE 1
TRAFFIC PROJECTIONS

			<u>VEHIC</u>	LE TR	IPS GE	<u>NERATEI</u>)			
<u>USE</u>	\underline{AM}	I PEAK	HOUR	PM	I PEAK	HOUR	SATUR	RDAY	PEAK HOU	JR
	<u>IN</u>	<u>OUT</u>	TOTAL	$\overline{\mathbf{N}}$	<u>OUT</u>	TOTAL	$\underline{\mathbf{I}}\underline{\mathbf{N}}$	<u>OUT</u>	TOTAL	
20 Units Townhouse	2	12	14	11	5	16	5	4	9	

Having determined the trip generation for the residential townhouse site, the trips developed were assigned to the surrounding roadway system based on existing peak hour travel patterns identified from the field traffic counts, site and area roadway accessibility, and with consideration of the Orange Lawn Redevelopment Plan Ordinance #2016-08.

The Redevelopment Ordinance states (p. 9) that the 20 townhouses "...shall be accessed from Ridgewood Road via the existing Orange Lawn Tennis Club driveway." Based on the preceding, an analysis of N. Ridgewood Road traffic volumes identified peak hour percentile orientations, for the residential site, of 60% to/from the south and 40% to/from the north on N. Ridgewood Road.

Although the Redevelopment Ordinance has all residential site traffic to/from N. Ridgewood Road, the Club's second access drive at Redmond Road affords a more favorable routing for residential generated vehicles destined to/from the southwest of the site, though the South Orange Avenue & N. Wyoming Avenue intersection. This orientation pattern is not only shorter than traveling N. Ridgewood Road to South Orange Avenue, but also avoids the traffic signal at the N. Ridgewood Road & South Orange Avenue intersection. HMA has assumed 20% of the townhouse peak hour trips would use the secondary travel route, which adjusts the peak hour trip assignments at the N. Ridgewood Road & Club Drive intersection to 40% to/from each direction of N. Ridgewood Road. It is noted that the 20% trip assignment to the Club Drive at Redmond Road is nominal in magnitude, equaling only 2-3 trips in either peak hour. Applying the noted orientation percentages to the site peak hour generated traffic resulted in the site trip assignments shown on Exhibit 4.

Exhibit 5 summarizes the 2018 Proposed Full Build peak hour traffic volumes (Exh. 3+4 = Exh. 5).

EXHIBIT 4

SITE GENERATED PEAK HOUR TRIP ASSIGNMENTS

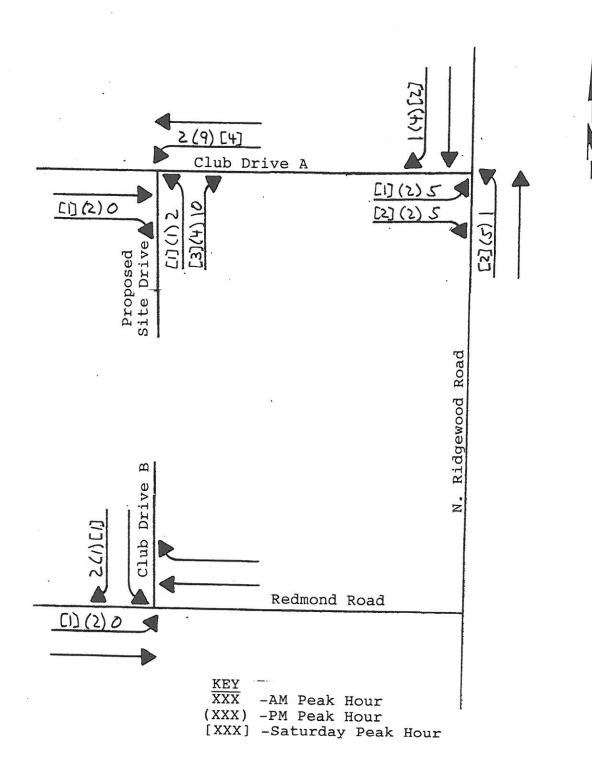
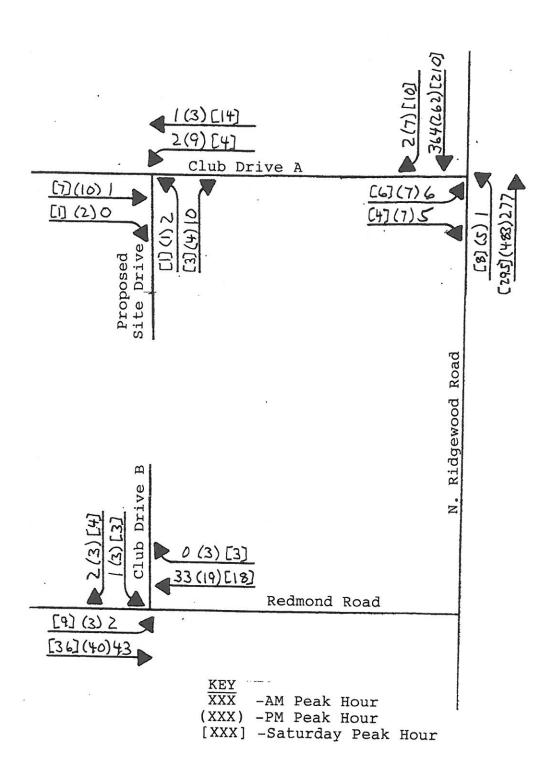



EXHIBIT 5

2018 PROPOSED FULL BUILD PEAK HOUR TRAFFIC VOLUMES

V. ANALYSIS

Based on the data gathered, traffic projections performed and directional assignments made, the subject intersections of this study were analyzed as to capacity and levels of service (LOS) during the weekday am and pm street peak hours. Capacity analyses were based on unsignalized intersection procedures, as published in the 2010 Highway Capacity Manual (HCM) and associated Highway Capacity Software (HCS). The various time periods and conditions analyzed were as follows:

- 1. 2016 Existing Conditions;
- 2. 2018 Existing No Build Conditions with background traffic growth; and
- 3. 2018 Proposed Full Build Conditions.

The efficiency with which an intersection operates is a function of volume and capacity. The capacity of an intersection is the volume of vehicles it can accommodate during a peak hour and is described in terms of Level of Service (LOS). Levels of Service range from 'A' through 'F', with 'A' representing excellent conditions with little or no delays, while 'F' has long delays and possible flow breakdown. A more in-depth description of Levels of Service for unsignalized intersections can be found in the Appendix to this report (see A-9), as well as the analysis computations (A-10 thru 30). Accordingly, the following findings were established and conclusions drawn relating to traffic capacity impacts to be generated by the proposed residential development.

A. N. Ridgewood Road & Club Drive

Table 2 summarizes the results of HCM capacity analysis procedures for unsignalized intersections, based on existing geometrics, traffic control, and existing/proposed volumes (see A-10 thru 21). The capacity analyses reflects 20% of the site generated traffic being assigned to/from the Redmond Road Club access drive.

For 2016 existing conditions, and all peak hours, the N. Ridgewood Road NB left turn movement to the Club Drive functions at LOS 'A'. The Club Drive EB approach left/right movements operate at LOS 'B' in all peak hours. All the foregoing are very good peak hour operating conditions, indicative of short delays and short vehicle queues.

With inclusion of background traffic growth to 2018 (existing condition), there were no changes in the LOS 'A' or 'B' identified for the several roadway approaches. Impacts were in the form of a fraction of a second or no increase in delay.

With construction of the residential townhouse project, in the 2018 Full Build scenario, there were again no changes in the levels of service 'A' or 'B' identified for the several roadway approaches in either peak hour. Impacts were in the form of a fraction of a second or no increase in delay. This impact is essentially imperceptible to motorists, with the intersection continuing to operate at very good conditions. No mitigation is required at this intersection due to the proposed project.

If all townhouse generated traffic was restricted to using the Club Drive to/from N. Ridgewood Road only, the 2018 Full Build capacity analyses would remain unchanged at LOS 'A' and 'B' with only a fraction of a second of change in average vehicle delay (see A-19-21). This is reflective of the nominal volumes affected and generated by the townhouse project.

TABLE 2

PEAK HOUR CAPACITY ANALYSIS N. RIDGEWOOD ROAD & CLUB DRIVE UNSIGNALIZED

MOVEMENT	2016 EXISTING CONDITIONS LOS/AVG DEL	2018 EXISTING CONDITIONS LOS/AVG DEL	2018 PROPOSED CONDITIONS LOS/AVG DEL
		WEEKDAY AM PEAK HOUR	
N. Ridgewood Road NB Left/Thru	A/ 8.0	A/ 8.0	A/ 8.0
Club Drive EB Left/Right	B/13.2	B/13.5	B/12.2
	ς.	WEEKDAY PM PEAK HOUR	
N. Ridgewood Road NB Left/Thru	A/ 7.7	A/ 7.8	A/ 7.8
Club Drive EB Left/Right	B/12.1	B/12.2	B/12.4
		SATURDAY PM PEAK HOUR	
N. Ridgewood Road NB Left/Thru	A/ 7.7	A/ 7.7	A/ 7.7
Club Drive EB Left/Right	B/11.7	B/11.8	B/11.6
Key: LOS = Level of Se	rvice		

Avg Del = Average Vehicle Delay

B. Redmond Road & Club Drive

Table 3 summarizes the results of HCM capacity analysis procedures for unsignalized intersections, based on existing geometrics, traffic control, and existing/proposed volumes (see A-22 thru 30). The capacity analyses reflects 20% of the site generated traffic being assigned to/from the Redmond Road Club access drive.

For 2016 existing conditions, and all peak hours, the Redmond Road EB left turn movement to the Club Drive functions at LOS 'A'. The Club Drive SB approach left/right movements operate at LOS 'A' in all peak hours. All the foregoing are very good peak hour operating conditions, indicative of short delays and short vehicle queues.

With inclusion of background traffic growth to 2018 (existing condition), there were no changes in the LOS 'A' identified for the several roadway approaches. There were no identifiable increases in average vehicle delay.

With construction of the residential townhouse project, in the 2018 Full Build scenario, there were again no changes in the LOS 'A' identified for the several roadway approaches in any peak hour. The critical intersection movements will experience no increases in delay, which is due to the nominal increase in site generated traffic through this location and which will be imperceptible to motorists. The intersection will continue to operate at very good conditions. No mitigation is required at this intersection due to the proposed project.

TABLE 3

PEAK HOUR CAPACITY ANALYSIS REDMOND ROAD & CLUB DRIVE UNSIGNALIZED

MOVEMENT	2016 EXISTING CONDITIONS LOS/AVG DEL	2018 EXISTING CONDITIONS LOS/AVG DEL	2018 PROPOSED CONDITIONS LOS/AVG DEL
		WEEKDAY AM PEAK HOUR	
Redmond Road EB Left/Thru	A/ 7.3	A/ 7.3	A/ 7.3
Club Drive SB Left/Right	A/ 9.0	A/ 9.0	A/ 8.6
		WEEKDAY PM PEAK HOUR	
Redmond Road EB Left/Thru	A/ 7.2	A/ 7.2	A/ 7.2
Club Drive SB Left/Right	A/ 8.7	A/ 8.7	A/ 8.6
		SATURDAY PM PEAK HOUR	
Redmond Road EB Left/Thru	A/ 7.3	A/ 7.3	A/ 7.3
Club Drive SB Left/Right	A/ 8.7	A/ 8.7	A/ 8.7

Key: LOS = Level of Service

Avg Del = Average Vehicle Delay

C. Townhouse Site Circulation & Parking

The proposed townhouse project is located in the eastern section of the Orange Lawn Tennis Club property. Access to the townhouse site is through a cul-de-saced (hammerhead design terminus) roadway that will intersect the Club's existing N. Ridgewood Road access drive, as a 'Stop' controlled T-intersection approach on the latter's south side. As part of this project, some widening of the Club Drive will be performed between the townhouse site drive and N. Ridgewood Road, so as to provide a uniform 20 foot wide pavement. No parking will be permitted on either side of the Club Drive, within the noted length of road. Access to local roads is available for the townhouse site through the Club's access drives to N. Ridgewood Road and Redmond Road.

Being a residential development, the townhouse project is subject to the NJ Residential Site Improvement Standards (RSIS). Based on the RSIS guidelines, we note the following related to parking and traffic volumes:

- a. There are 80 parking spaces provided for the 20 townhouse units. Each townhouse has a two-car garage and driveway combination which counts as 3.5 off-street parking spaces, based on the RSIS Sect. 5:21-4.14(d)3. This equals 70 spaces for the 20 townhouse units. In addition, there are ten (10) on-street parking spaces provided, distributed as five (5) perpendicular spaces by the hammerhead turnaround terminus, and five (5) parallel spaces along the east side of the site access road. The RSIS Table 4.4 Parking Requirements For Residential Land Uses, requires 2.4 spaces per 3 bedroom townhouse, or 48 spaces for the 20 units proposed. The RSIS parking standard is more than adequately met, with 80 spaces provided (4.0 spaces per unit).
- b. The proposed site access road is 28 feet wide and provides 7 foot wide parallel parking spaces, as well as a sidewalk on one side of the road. This conforms with RSIS Table 4.3 Cartway and Right-of-Way Widths and Illustration 1 of 14, for a Residential Access-a. Parallel Parking Low Intensity.

- c. The five on-street, perpendicular parking spaces are 9'x18' in size, which conforms with RSIS Sect. 5:21-4.15. The five on-street parallel parking spaces are 23 feet long, which conforms with RSIS Sect. 5:21-4.14(f).
- d. Based on RSIS Table 4.2, the maximum average daily traffic (ADT) for a multi-family access cul-de-sac that provides a means for vehicles to turn around (hammerhead design), is 1000 trips. For the 20 townhouse units proposed, the ADT is 116 trips, which is well within the RSIS maximum of 1000 ADT limit.
- e. Sect. 5:21-4.14 Table 4.4 Parking Requirements For Residential Land Uses Table 4.4 Note b states: "Requirements for attached units (apartment/condominium/townhouse) include provisions for guest parking (0.5 spaces per dwelling unit). Guest parking must either be provided for on street or in common parking areas."
 - With 20 townhouse units proposed, a total of 10 visitor parking spaces would be required, based on the 0.5 spaces per unit for visitors (included within the 2.4 spaces per unit). As 10 on-street perpendicular/parallel parking spaces are provided, the RSIS guideline is met.
- f. RSIS Sect. 5:21-4.14(d)3. "A two car garage and driveway combination shall count as 3.5 off-street spaces, provided a minimum parking area width of 20 feet is provided for a length of 18 feet, as specified for a one-car garage and driveway combination."
 - The site plan provides 20 foot wide drives that are a minimum of 20 feet long, thereby conforming to the RSIS.

Ingress and egress to and from the site is designed and will function in a safe and efficient manner, in accordance with sound engineering practice and considering reasonable and prudent driving behavior.

D. Orange Lawn Tennis Club Parking and Improvements Summary

As part of the site plan application, there are several changes being made to the Club's portion of the property, as follows:

- 1. The townhouse development is being constructed in a field area where the Club currently valet parks overflow vehicles for major events. Consequently. This valet parking is being relocated onto the Club's remaining portion of the property. Secondly, Club valet overflow parking along the N. Ridgewood Road access drive will no longer be allowed and is also being relocated onto the Club's remaining property.
- 2. To accommodate the relocated valet overflow parking, the site plan has reconfigured and added some paved parking spaces and identified areas for overflow (valet) parking. A total of 150 parking spaces are provided in this redesign, distributed as 104 paved spaces and 46 overflow spaces. It is noted that the 150 parking spaces exceeds the required minimum of 146 spaces for the Club site, the latter number established in a prior municipal Board application approval.
- 3. Two (2) tennis courts, located in the rear of the Club site, are proposed to have 'bubble domes' placed over them, so as to accommodate winter play. Trip generation related to this proposal is minimal, as it affects only two courts that would allow tennis play during winter months when there is minimal use of the recreational portion of the Club site.

There are no modifications being proposed to the Club's operations, including maximum number of catered events, which are identified and restricted according to the terms of a previous Resolution of the South Orange Planning Board (Case No. 204A – July 17, 2008), related to an addition to the clubhouse ballroom.

VI. <u>CONCLUSIONS</u>

From the analysis performed and as presented herein, it is the conclusion of this report that the proposed 20 unit residential townhouse project will have no significant or detrimental traffic impacts at either of the Club Drive intersections with N. Ridgewood Road or Redmond Road. The capacity analyses identified very good levels of service, in the LOS 'A' – 'B' range at each intersection in each peak hour studied. Impacts will essentially be imperceptible to motorists. The project's projected weekday peak hour trip generation is very small in magnitude, being only 14 and 16 trips in the respective am and pm peak hours, and 9 trips in the Saturday peak hour.

Being a residential development, the townhouse project is subject to the NJ Residential Site Improvement Standards (RSIS). Based on the RSIS guidelines, the 20 proposed 3 bedroom units require a minimum of 48 parking spaces, with 80 spaces being provided on-site. Seventy (70) of the parking spaces are provided in garages and driveways, with the remaining 10 spaces located on-street as perpendicular (5) and parallel (5) parking spaces. The ten on-street spaces meet the RSIS requirement for ten on-street visitor spaces.

The maximum average daily traffic (ADT) permitted by the RSIS, for a multi-family cul-de-sac that provides a means of turnaround, is 1000 trips. For the 20 townhouse units proposed, the ADT is 116 trips, which is well within the RSIS maximum 1000 ADT limit.

Signage and pavement markings should be provided as noted on the site plans.

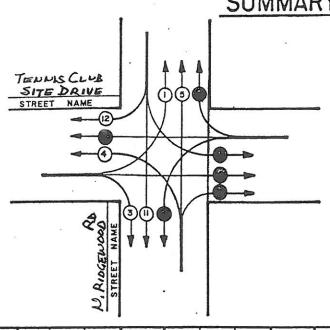
As part of the site plan application, there are several changes being made to the Club's portion of the property. The townhouse development is being constructed in a field area where the Club currently valet parks overflow vehicles for major events. Secondly, Club valet overflow parking along the N. Ridgewood Road access drive will no longer be permitted. The noted overflow parking is being relocated onto the Club's remaining property in reconfigured and paved parking areas. The 150 parking spaces provided in the redesign exceed the 146 spaces required for the Club site, the latter number established in a prior municipal Board application approval. Lastly, two (2) tennis courts, located in the rear of the Club site, are proposed to have 'bubble domes' placed over them, so as to accommodate

winter play. Trip generation related to this proposal is minimal, as it affects only two courts that would allow tennis play during winter months when there is minimal use of the recreational portion of the Club site. There are no modifications being proposed to the Club's operations.

Ingress and egress to and from the site is designed and will function in a safe and efficient manner, in accordance with sound engineering practice and considering reasonable and prudent driving behavior.

APPENDIX

LOCATION N. RIDGEWOOD ROAD \$


ORANGE LAWD TENNIS LUB DRIVE

MUNICIPALITY TWP. OF SOUTH ORANGE VILLAGE

COUNTY ESSEX

DATE FROM 7 AM. TO 9 AM (INDICATE DAY)

SUMMARY SHEET

PROJECT NO. 116-13

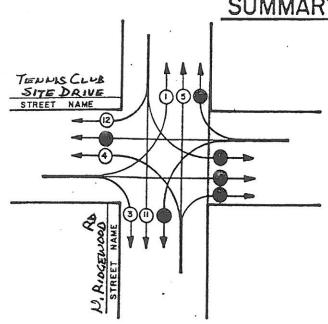
WEATHER CLEAR

_RECORDER_HKM

TOTAL TOTAL TIME TOTAL TOTAL 4-5-6 10-11-12 AM or PM 7:00 7:30 7:45 8:00 8:15 8:30 8:45 6/ 9:00 7:30 -8:30 PHF 0.96 % HVY 0% 2% 1% VEHS TOTAL

LOCATION N. RINGEWDON ROAN &

ORANGE LAWD TENNIS LUB DRIVE


MUNICIPALITY TWO. OF SOUTH ORANGE VILLAGE

COUNTY ESSEX

DATE SEPT. IS, 2016 SMT WOFS

TIME: FROM 4 PM. TO 6 PM. (INDICATE DAY)

SUMMARY SHEET

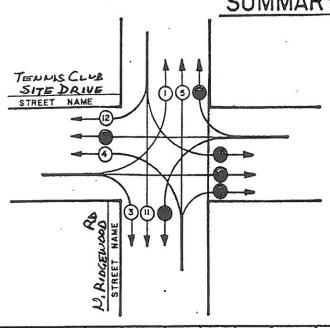
PROJECT NO. 116-13

WEATHER CLEAR RECORDER HKM

TIME AM or PM	,	2	3	1-2-3	4	5	6	TOTAL 4-5-6	7	8	9	TOTAL 7-8-9	10	11	12	TOTAL 10-11-12	TOTAL
4:00	_	_	_		_	_	_						-			-	
4:15	0		1	1	0	62		62						62	1	63	126
4:30	0		1	1	0	94	$\setminus $	94						69	2	71	166
4:45	0		0	0	1	77	17	78					1	67	I	68	146
5100	0	V	O	Ö	1	86	V	87					\forall	75	5	80	167
5115	2		5	7	0	119	Λ	119						48	1	49	175
5130			0	1	0	120	1	120					1	64	1	65	186
5145	1		٥	Í	0	114	$I \setminus$	114					11	73	0	73	188
6:00	1		0		Ô	116	1	116						69	1	70	187
														,	•	70	101
5-6	5		5	10	D	469	_	469				•	_	254	3 ·	257	736
																	730
PHF																	0.98
% HUY VEHS				0%				0%								0%	-110
						•											
																	$\neg \neg$
TOTAL	_		-														
TOTAL																	

LOCATION N. RINGEWOOD ROAD &

ORANICE LAWD TEDDIS CLUB DRIVE


MUNICIPALITY TWP. OF SOUTH ORANGE VILLAGE

COUNTY ESSEX

DATE SEPT. 10, 20/6 SMTWT FS

TIME: FROM 10 A M. TO / DM. (INDICATE DAY)

SUMMARY SHEET

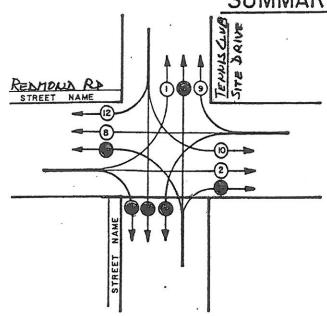
PROJECT NO. 116-13

WEATHER PT, CLDY, RECORDER HKM

TOTAL TOTAL TOTAL TIME TOTAL TOTAL. 7-8-9 10-11-12 AM or PM 1-2-3 4-5-6 10:00 10:15 Ò 11:00 11:15 11:30 11:45 12:15 12:30 12:45 5/1 PHF 0.88 % HVY VEHS 0% 1% 0% TOTAL

LOCATION REATIONS ROAD & ORANGE LAWN

TENNIS CLUB DRIVE

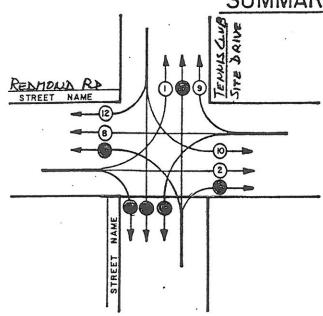

MUNICIPALITY TWO, OF SOUTH ORANGE VILLAGE

COUNTY ESSEX

DATE SEAT. IS, 2016 SMT WOFS

TIME: FROM 7 A M. TO 9 A M. (INDICATE DAY)

SUMMARY SHEET


PROJECT NO. 116-13

			١٣							w	EATHE	R CLE	FAR	_ REC	ORDE	REM	
TIME AM or PM	1	2	3	TOTAL 1-2-3	4	5	6	TOTAL 4-5-6	7	8	9	TOTAL 7-8-9	10	11	12	TOTAL 10-11-12	TOTAL.
7:00	_	_											<u> </u>	_	_		
7:15	0	7		7						7	0	7	0		0	0	14
7:30	٥	6	1	6						3	0	3	0		0	0	9
7145	0	13	M	13						10	0	10	0	1	0	0	23
8:00	1	9	I V	10			/			11	0	11	0	V	0	0	21
8115	0	15		15						7	0	7	0		0	0	22
8:30	1	5	/	6						4	0	4	1		0	1	1)
8:45	0	11		11 -						フ	0	7	0	1	0	0	18
9:00	0	10		10						3	0	3	0		0	0	13
			7.1														
7,30	2	42		44						35	0	32	1		0	1	77
						·										¥	
PHF											e e						0.84
% HUY VEHS				0%								0%				0%	
	-		-			-											
TOTAL																	

A-4

LOCATION REDMOND ROAD & ORANGE LAWL
TENNIS CLUB DRIVE
MUNICIPALITY TWP. OF SOUTH DRANGE VILLAGE
COUNTY ESSEX
DATE SEAT, AS, 2016 SMTWOFS
TIME FROM 4 PM. TO 6 PM. (INDICATE DA

SUMMARY SHEET

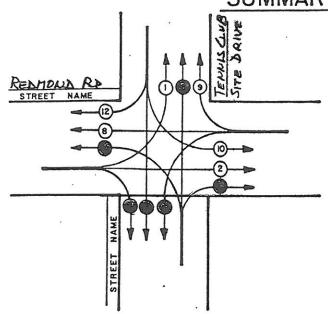
PROJECT NO. 116-13

WEATHER CLEAR RECORDER EM

						900					-~!!!						
TIME AM or PM	ı	2	3	TOTAL 1-2-3	4	5	6	TOTAL 4-5-6	7	8	9	TOTAL 7-8-9	10	11	12	TOTAL 10-11-12	TOTAL
4100		_	_						_	_			<u> </u>			_	
4115	1	6		7						7	2	9	1	\ /	0	1	17
4:30	0	9		9					$\mathbb{N}/$	5	0	5	0		0	0	14
4145	2	5	M	7						4	0	4	0	M	0	0	11
5:00	0	9	V	9			ł			6	2	8	0	V	0	0	17
5115	1	9		10						5	0	5	2	Λ	1	3	18
5:30	0	8		8						2	1	3	0		0	0	11
5:45	0	11	$/ \setminus$	11					1	7	0	7	1		0	1	19
6:00	0	11		11						5	2	7	0		1	1	19
-																	
5-6	1	39	-	40						19	3	22	3		2	5	67
						·											
PHF																	0,88
% HUY VEKS				0%								0%				0%	
													·				
TOTAL																	

A-5

LOCATION REDMOND ROAD & OBANGE LAWN
TENNIS CLUB DRIVE


MUNICIPALITY TWO, OF SOUTH DRANGE VILLAGE

COUNTY ESSEX

DATE SEPT, 10, 20/6 SMTWT S

TIME! FROM 10 AM. TO 1 PM. (INDICATE DAY)

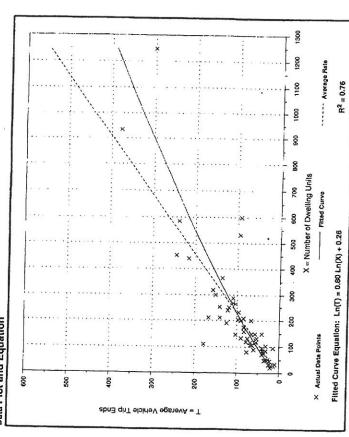
SUMMARY SHEET

PROJECT NO. 116-13

WEATHER PT. CLAY, RECORDER EM TIME TOTAL TOTAL TOTAL TOTAL AM or PM 1-2-3 4-5-6 7-8-9 TOTAL. 10-11-12 10:00 10:15 10:30 10:45 D 11:00 11:15 11:45 12/15 1:00 10:45 PHF 0,70 % HUY VEHS 0% 0% 0% TOTAL

Residential Condominium/Townhouse

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday,


Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 59
Avg. Number of Dwelling Units: 213
Directional Distribution: 17% entering, 83% exiting

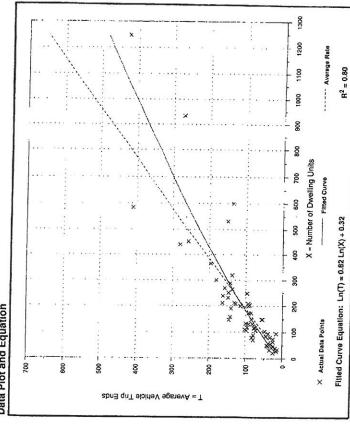
Trip Generation per Dwelling Unit

Standard Deviation	990
Range of Rates	0.15 - 1.61
Average Rate	0.44

Data Plot and Equation

Residential Condominium/Townhouse

Average Vehicle Trip Ends vs: Dwelling Units
On a: Weekday,
Peak Hour of Adjacent Street Traffic,


One Hour Between 4 and 6 p.m.

Number of Studies: 62 Ayg. Number of Dwelling Units: 205 Directional Distribution: 67% entering, 33% exiting

Trip Generation per Dweiling Unit

Standard Deviation	210
Range of Rates	0.18 - 1.24
Average Rate	0.52

Data Plot and Equation

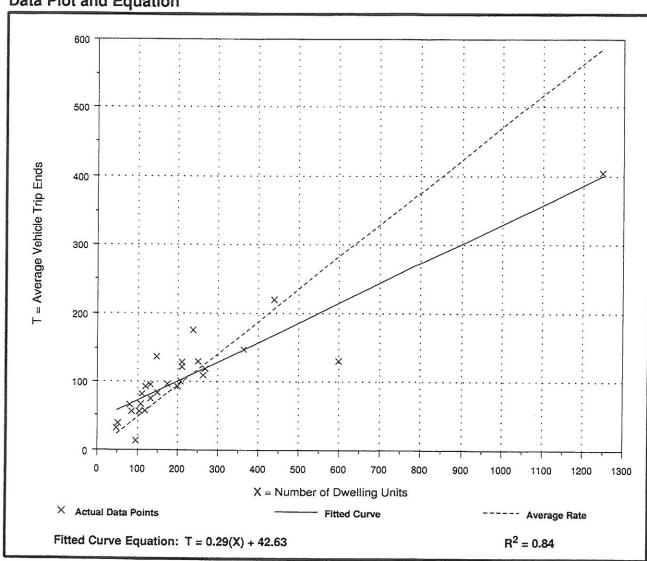
Trip Generation, 9th Edition • Institute of Transportation Engineers

Residential Condominium/Townhouse (230)

Average Vehicle Trip Ends vs: Dwelling Units

On a: Saturday,

Peak Hour of Generator


Number of Studies: 27 Avg. Number of Dwelling Units: 228

Directional Distribution: 54% entering, 46% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.47	0.14 - 0.93	0.71

Data Plot and Equation

LEVEL OF SERVICE ANALYSIS

While traffic volumes provide a measure of activity on the area roadway system, it is also important to evaluate how well that system can accommodate those volumes – i.e., a comparison of peak hour traffic volumes with available roadway capacity. By definition capacity represents the maximum number of vehicles that can be accommodated given the constraints of roadway geometry, environment, traffic characteristics, and controls. Intersections are usually the critical point in any road network since it is at such points that conflicts exist between through, crossing, and turning traffic. It is at these locations where congestion is most likely to occur.

Unsignalized Intersections

An unsignalized (i.e., "YIELD" or "STOP" sign controlled) driveway or side street along a through route is seldom critical from an overall capacity standpoint, however, it may be of great significance to the capacity of the minor cross-route, and it may influence the quality of traffic flow on both. In analyzing unsignalized intersections, it is assumed that both the through traffic movements and right turn movements on the major street approaches are unimpeded and have the right-of-way over the minor street approaches and left turns from the major street. All other turning movements at the intersection cross, merge with, or are otherwise impeded by the major street movements.

The concept in determining traffic delays at an unsignalized intersection is to process these impeded movements in a sequential manner. For each impeded movement, all conflicting flows are summed, and an initial critical 'gap' in traffic is determined with a "follow-up" gap determined for subsequent vehicles waiting in a queue. Based upon the number of available gaps in the passing traffic stream, the potential capacity of that movement can be calculated.

However, since operation at capacity is usually unsatisfactory to most drivers, a descriptive mechanism (Level of Service) has been developed to describe traffic operations as a function of average total delay. Unsignalized Levels of Service range from 'A' (delays less than seconds) to 'F' (delays greater than seconds). Table I summarizes the relationship between capacity and Level of Service for unsignalized intersections:

TABLE I

Levels of Service and Expected Delay
For Unsignalized Intersections

Level of Service	Average Total Delay (Seconds/Vehic
2	<10
b.	>10 and ≤ 15
c	>15 and <25
d	> 25 and ≤ 35
e	> 35 and < 50
f	. >50

Source: Transportation Research Board, <u>Highway Capacity Manual 2010</u>, published by the Transportation Research Board, Wash., D.C.

HCS+: Unsignalized Intersections Release 5.6

 TWO-WAY	STOP	CONTROL	SUMMARY	

Analyst:

HKM

HAMAL ASSOCIATES
Date Performed: 9/30/2016

Intersection:

Analysis Time Period: AM PEAK HOUR

N. RIDGEWOOD RD & CLUB DRIVE

TWP OF SOUTH ORANGE VILLAGE

Jurisdiction:

Jurisdiction.
Units: U. S. Customary
2016 EXISTING

Analysis Year: 2016 EXISTING
Project ID: 2016 EXISTING VOLUMES -AM PEAK HOUR-1613E09

East/West Street: CLUB DRIVE
North/South Street: N. RIDGEWOOD ROAD

Intersection Orientation: NS

Movement 1 2 3 1 4 5 6 L T R I L T R Volume Peak-Hour Factor, PHF 0.96 0.96 Hourly Flow Rate, HFR 0 280 367 1 Percent Heavy Vehicles 0	Major Street:	Approach	icle Vol No	umes an rthboun		ıstme		uthbou	nd	
L T R L T R Volume		Movement	1	2	3	1	1000		10(1000)	
Peak-Hour Factor, PHF 0.96			L	T	R	1	L	T	1510	
Hourly Flow Rate, HFR			0	269				353	1	
Hourly Flow Rate, HFR 0 280 367 1 Percent Heavy Vehicles 0	Peak-Hour Fact	or, PHF	0.96	0.96				0.96	0.96	
Percent Heavy Vehicles 0 </td <td></td> <td></td> <td>0</td> <td>280</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			0	280						
### Channelized? Lanes	Percent Heavy	Vehicles	0							
Configuration LT TR Upstream Signal? No No No Minor Street: Approach Westbound Eastbound 11 12 12 1 T R Wolume 1 T R L T R Volume 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Median Type/St	orage	Undiv.	ided			/			
No			0	1				1	0	
Minor Street: Approach Westbound Eastbound Novement 7 8 9 1 10 11 12 L T R Volume Peak Hour Factor, PHF 0.96 0.96 Hourly Flow Rate, HFR 1 0 Percent Heavy Vehicles 0 0 0 Flared Approach: Exists?/Storage / No / Lanes 0 0	Configuration		L'	r				9	rr	
Movement 7 8 9 1 10 11 12 L T R L T R Volume Peak Hour Factor, PHF 0.96 0.96 Hourly Flow Rate, HFR 1 0 Percent Heavy Vehicles Percent Grade (%) 0 0 Flared Approach: Exists?/Storage / No / Lanes	Upstream Signa	1?		No				No		
L T R L T	Minor Street:		11111	stbound			Ea	stbound	i	
Volume Peak Hour Factor, PHF Percent Heavy Vehicles Percent Grade (%) Percent Approach: Exists?/Storage Lanes 0 0 0 0 0 0 0 0 0 0 0 0 0		Movement	7	8	9	1	10	11	12	
Peak Hour Factor, PHF 0.96 0.96 Hourly Flow Rate, HFR 1 0 Percent Heavy Vehicles 0 0 Percent Grade (%) 0 Flared Approach: Exists?/Storage / No / Lanes 0 0			L	T	R	1	L	T	R	
Hourly Flow Rate, HFR 1 0 Percent Heavy Vehicles 0 0 Percent Grade (%) 0 Flared Approach: Exists?/Storage / No / Lanes 0 0							1		0	
Percent Heavy Vehicles 0 0 Percent Grade (%) 0 0 Flared Approach: Exists?/Storage / No / Lanes 0 0							0.96		0.96	
Percent Grade (%) 0 0 Flared Approach: Exists?/Storage / No / Lanes 0 0							1		0	
Flared Approach: Exists?/Storage / No / Lanes 0 0							0		0	
Lanes 0 0				0				0		
Confirmation		h: Exists?/	Storage			1			No	/
Configuration LR							0		0	
	Configuration							LR		

Approach	_Delay, NB	SB			h, and Lev Westbound				astbound	
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				i		LR	
v (vph)	0								1	
C(m) (vph)	1202								438	
√/c	0.00								0.00	
95% queue length	0.00								0.01	
Control Delay	8.0								13.2	
LOS	A								B	
Approach Delay									-	
Approach LOS									13.2	
									В	

HCS+: Unsignalized Intersections Release 5.6

	TWO	-WAY	STOP	CONTR	OL SUM	MAR	¥			
Analyst:	HKM									
Agency/Co.:	HAMA	L ASS	OCIA	TES						
Date Performed:		/2016								
Analysis Time Per:			OUR							
Intersection:				RD & C	LUB DR	IVE				
Jurisdiction:				ORANGE						
Units: U. S. Custo										
Analysis Year:		EXIS	TTNG							
Project ID: 2016					AK HOD	R-1	613E10			
East/West Street:		DRIV					020220			
North/South Street		IDGEW		ROAD						
Intersection Orien					St	udv	perio	d (hrs): 0.25	
Incorporation office							FOLLO	- (.,	
	Vehic	cle V	olum	es and	Adjus	tme	nts			
Major Street: App	roach		Nort	hbound			Son	uthbou		
rom	rement	1		2	3	1	4	5	6	
		L		T	R	1	L	T	R	
Volume	7200	0		469				254	3	
Peak-Hour Factor,		0.9		0.98				0.98		
Hourly Flow Rate,		0		478				259	3	
Percent Heavy Vehi		0								
Median Type/Storag	ge .	Und.	ivíd	led			/			
RT Channelized?										
Lanes		1	7.0	1				1	0	
Configuration			LT						TR	
Upstream Signal?				No				No		
Minor Street: App	we a ch		Wast	bound			77.7	stboun	d	
	roach vement	7		8	9	1	10	11	12	
MOV	emeric	L		T	R	i	L	T	R	
		п		1	K	1	ш	-	10	
Volume							5		5	
Peak Hour Factor,	PHF						0.98		0.98	
Hourly Flow Rate,							5		5	
Percent Heavy Vehi							0		0	
Percent Grade (%)				0				0		
Flared Approach:	Exists?/S	Stora	ge			1			No	1
Lanes		and the second second					0		0	
Configuration								LR		
	Delay, Qu	ielle l	[.ena	th.an	d Leve	1 0	f Serv	ice		
Approach	NB	SB	Long		bound		L CCLV.		tbound	
Movement	1	100 m	1 7		8	9	1 :	10		12
Lane Config	LT	8 (,		•	,		- 5	LR	
	6550M60						•			2121221
v (vph)	0								10	
C(m) (vph)	1314								519	
v/c	0.00								0.02	
95% queue length	0.00								0.06	
Control Delay	7.7								12.1	
									В	
LOS	A									
	A								12.1 B	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM HAMAL ASSOCIATES

Agency/Co.:

Agency/Co.: HAMAL ASSO Date Performed: 9/30/2016

Analysis Time Period: SATURDAY PEAK HOUR

Intersection: N. RIDGEWOOD RD & CLUB DRIVE
Jurisdiction: TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary
Analysis Year: 2016 EXISTING Units: U. S. CLOSCOLLA |
Analysis Year: 2016 EXISTING
Project ID: 2016 EXISTING VOLUMES -SATURDAY PEAK HOUR-1613E11
East/West Street: CLUB DRIVE

North/South Street: N. RIDGEWOOD ROAD

Intersection Orientation: NS

	Vehi	cle Vol	umes and	d Adju	stme	nts_			
Major Street:	Approach	No:	rthbound	i		S	outhbou	nd	
	Movement	1	2	3	1	4	5	6	
		L	T	R	1	L	T	R	
Volume		6	286				204	8	
Peak-Hour Fact	or, PHF	0.88	0.88				0.88	0.88	
Hourly Flow Ra	te, HFR	6	325				231	9	
Percent Heavy	Vehicles	0							
Median Type/St RT Channelized		Undiv	ided			/			
Lanes		0	1				1	0	
Configuration		L'	P					TR	
Upstream Signa	1?		No				No		
Minor Street:	Approach	We	stbound			E	astboun	d	
	Movement	7	8	9	1	10	11	12	
		L	T	R	I	L	T	R	
Volume	9					5		2	
Peak Hour Fact Hourly Flow Ra						0.88		0.88	
Percent Heavy						0		0	
Percent Grade			0				0	1. = 10	
Flared Approact	h: Exists?/	Storage			/	0		No 0	/
Configuration							LR		

Approach	NB	SB			th, and Leve Westbound	01			Eastbound	
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config .	LT		1				1		LR	
v (vph)	6								7	Words -
C(m) (vph)	1339								545	
∀ /c	0.00								0.01	
95% queue length	0.01								0.04	
Control Delay	7.7								11.7	
LOS	A								В	
Approach Delay									11.7	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

	HCS+: Uns	sign	alize	d Inte	rsect	ions	Relea	se 5.6		
	TWO	O-WA	Y STO	P CONT	ROL S	UMMAR	Y			
Analyst:	HKM									
Agency/Co.:	HAMA	AL AS	SSOCI	ATES						
Date Performed:	9/30	/20:	16							
Analysis Time Per	iod: AM H	PEAK	HOUR							
Intersection:	N. F	RIDG	EWOOD	RD &	CLUB	DRIVE				
Jurisdiction:	TWP	OF :	SOUTH	ORANG	E VIL	LAGE				
Units: U. S. Cust										
Analysis Year:		EX:	ISTIN	G						
Project ID: 2018					EAK H	OIIR-1	613E1	2		
East/West Street:								_		
North/South Stree				ROAD						
Intersection Orie						Study	peri	od (hr	s): 0.	25
							F			
		cle	Volu	mes an	d Adj	ustme	nts_			
	proach		Nor	thboun			S	outhbo		
Mo	vement	1		2	3	1	4	5	6	
		L		T	R	1	L	T	R	
Volume		0		277				364	1	
Peak-Hour Factor,	PHF	0.	.96	0.96				0.9	6 0.9	6
Hourly Flow Rate,		0		288				379	1	
Percent Heavy Veh	icles	0								
Median Type/Stora		UI	ndivi	ded			/			
RT Channelized?	-									
Lanes			0	1				1	0	
Configuration			LT						TR	
Upstream Signal?				No				No	0007000	
170				100000						
19 - 73	proach		Wes	tbound			E	astbou	nd	
Mo	vement	7		8	9	1	10	11	12	
		L		T	R	1	L	T	R	
Volume							1		0	
Peak Hour Factor,	PHF						0.96		0.9	6
Hourly Flow Rate,							1		0	-
Percent Heavy Veh							ō		Ö	
Percent Grade (%)				0			•	0		
Flared Approach:	Exists?/	Stor	are	•		1			No	/
Lanes	21120 00 17	0001	uge			,	0		0	,
Configuration								LR	•	
	1000 20 10	0 -10		110000		2010		-		
	_Delay, Q		Len				f Ser			
Approach	NB	SB	72 60		tbound	0.000	70	200000000	stbound	
fovement	1	4	- 15	7	8	9	1	10	11	12
Lane Config	LT		1				1		LR	
v (vph)	0								1	
C(m) (vph)	1190								426	
7/C	0.00								0.00	
95% queue length	0.00								0.01	
Control Delay	8.0									
LOS	A. O								13.5	
Approach Delav	A								B 13.5	
PPLUACII DELAY									13.5	

Approach Delay Approach LOS

В 13.5 В

HCS+: Unsignalized Intersections Release 5.6

Analyst: Agency/Co.: HKM

HAMAL ASSOCIATES

Date Performed:

9/30/2016

Analysis Time Period: PM PEAK HOUR

Intersection: Jurisdiction:

N. RIDGEWOOD RD & CLUB DRIVE

TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary
Analysis Year: 2018 EXISTING
Project ID: 2018 EXISTING VOLUMES -PM PEAK HOUR-1613E13
East/West Street: CLUB DRIVE

North/South Street:

N. RIDGEWOOD ROAD

Intersection Orientation: NS

Veh	icle Vol	umes an	d Adju	stme	ents			
Major Street: Approach	No	rthboun	d			Southbou	ind	
Movement	1	2	3	1	4	5	6	
	L	T	R	1	L	T	R	
Volume	0	483				262	3	
Peak-Hour Factor, PHF	0.98	0.98				0.98	0.98	1
Hourly Flow Rate, HFR	0	492				267	. 3	
Percent Heavy Vehicles	0							
Median Type/Storage RT Channelized?	Undiv	ided			1			
						12	•	
Lanes	0	1				1	0	
Configuration	T,	r					TR	
Upstream Signal?		No				No		
Minor Street: Approach	We	stbound				Eastbour	ıd	
Movement	7	8	9	1	10	11	12	
	L	T	R	1	L	T	R	
Volume					5		5	
Peak Hour Factor, PHF					0.9	8	0.98	
Hourly Flow Rate, HFR					5		5	
Percent Heavy Vehicles					0		0	
Percent Grade (%)		0				0		
Flared Approach: Exists?	/Storage			/		(5)	No	1
Lanes	3-			- 1		0	0	3.50
Configuration						LR	-	

Approach	NB	SB			Westbound	i		Ea	stbound	
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				1		LR	
v (vph)	0								10	-
C(m) (vph)	1305								507	
⊽/c	0.00								0.02	
95% queue length	0.00								0.06	
Control Delay	7.8								12.2	
LOS	A								В	
Approach Delay									12.2	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.: HAMAL ASSOCIATES

Date Performed: 9/30/2016

Analysis Time Period: SATURDAY PEAK HOUR

Intersection:

N. RIDGEWOOD RD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary

Analysis Year:

2018 EXISTING

Project ID: 2018 EXISTING VOLUMES -SATURDAY PEAK HOUR-1613E14

East/West Street:

CLUB DRIVE

North/South Street:

N. RIDGEWOOD ROAD

Intersection Orientation: NS

Study period (hrs): 0.25

Vehicle Volumes and Adjustments Major Street: Approach Northbound Southbound | 4 | L Movement 2 3 5 T L R T R Volume 6 295 210 Peak-Hour Factor, PHF 0.88 0.88 0.88 0.88 Hourly Flow Rate, HFR 6 238 9 335 Percent Heavy Vehicles 0 Median Type/Storage Undivided RT Channelized? Lanes 0 1 0 1 Configuration LT TR Upstream Signal? No No Minor Street: Approach Westbound Eastbound Movement 7 8 9 10 11 12 L Т R I L T R Volume 5 2 Peak Hour Factor, PHF 0.88 0.88 Hourly Flow Rate, HFR 5 2 Percent Heavy Vehicles 0 0 Percent Grade (%) Flared Approach: Exists?/Storage No Lanes 0 0 Configuration LR

Approach	_Delay,	9100	Le	ngt	h, and Lev		Ser			
	NB	SB			Westbound			1	Eastbound	
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				1		LR	
v (vph)	6		-						7	
C(m) (vph)	1331								535	
v/c	0.00								0.01	
95% queue length	0.01								0.04	
Control Delay	7.7								11.8	
LOS	A								В	
Approach Delay									11.8	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed:

9/30/2016

Analysis Time Period: AM PEAK HOUR

Intersection:

N. RIDGEWOOD RD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Jurisdiction:
Units: U. S. Customary
2018 PROPOSED Analysis Year: 2018 PROPOSED
Project ID: 2018 PROPOSED VOLUMES-AM PEAK HOUR-1613P09-20% VIA REDMOND

East/West Street:

CLUB DRIVE

North/South Street: N. RIDGEWOOD ROAD Intersection Orientation: NS

		icle Vol			stme					_
Major Street:	Approach		rthbound			Sc	uthbou	ind		
	Movement	1	2	3	- 1	4	5	6		
		L	T	R	1	L	T	R		
Volume		1	277			W-39	364	2		_
Peak-Hour Fact	or, PHF	0.96	0.96				0.96	0.96		
Hourly Flow Ra	te, HFR	1	288				379	2		
Percent Heavy	Vehicles	0								
Median Type/St RT Channelized		Undiv	ided			/				
Lanes		0	1				1	0		
Configuration		L	r					TR		
Upstream Signa	11?		No				No			
Minor Street:	Approach	We	stbound			Ea	stbour	nd		_
	Movement	7	8	9	1	10	11	12		
		L	T	R	1	L	T	R		
Volume	***************************************			-		6		5		_
Peak Hour Fact						0.96		0.96		
Hourly Flow Ra	te, HFR					6		5		
Percent Heavy	Vehicles					0		0		
Percent Grade	(%)		0				0			
Flared Approac	h: Exists?	/Storage			1			No	1	
Lanes						0		0		
Configuration							LR			

Approach	_Delay,	Queue SB	Le	ngt	h, and Lev Westbound		Ser		astbound	
Movement	1	4	1	7	#eschould	9	r	10	as cooma	12
Lane Config	LT	-	i	,	0	9	i	10	LR	12
v (vph)	1	-							11	
C(m) (vph)	1189								510	
v/c	0.00								0.02	
95% queue length	0.00								0.07	
Control Delay	8.0								12.2	
LOS	A								В	
Approach Delay									12.2	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

HAMAL ASSOCIATES Agency/Co.: Date Performed:

Analysis Time Period: PM PEAK HOUR

9/30/2016

N. RIDGEWOOD RD & CLUB DRIVE Intersection: Jurisdiction:
Units: U. S. Customary
2018 PROPOSED
VOLUMES-E TWP OF SOUTH ORANGE VILLAGE

Analysis Year: 2018 PROPOSED
Project ID: 2018 PROPOSED VOLUMES-PM PEAK HOUR-1613P10-20% VIA REDMOND

East/West Street: CLUB DRIVE
North/South Street: N. RIDGEWOOD ROAD

		icle Volu			stme				
Major Street:			thbound				ithbou		
	Movement	1	2	3	ļ	4	5	6	
		L	T	R	1	L	T	R	
Volume		5	483				262	7	
Peak-Hour Fact	or, PHF	0.98	0.98				0.98	0.98	
Hourly Flow Ra	te, HFR	5	492				267	7	
Percent Heavy	Vehicles	0							
Median Type/St RT Channelized		Undivi	.ded			/			
Lanes		0	1				1	0	
Configuration		LI	•					TR	
Upstream Signa	1?		No				No		
Minor Street:	Approach	Wes	tbound			Eas	stboun	d	
	Movement	7	8	9	1	10	11	12	
		L	T	R	1	L	T	R	
Volume				-10-		7		7	
Peak Hour Fact	or, PHF					0.98		0.98	
Hourly Flow Ra	te, HFR					7		7	
Percent Heavy	Vehicles					0		0	
Percent Grade	(%)		0				0		
Flared Approac	h: Exists?/	Storage			/			No	/
Lanes						0		0	
Configuration							LR		

Approach	_Delay,	Queue SB	Le	ngt	h, and Lew Westbound		Ser	-	astbound	
Movement	1	4	ı	7	8	9	1	10	11	12
Lane Config	LT		1				i		LR	
▼ (vph)	5								14	
C(m) (vph)	1301								501	
V/C	0.00								0.03	
95% queue length	0.01								0.09	
Control Delay	7.8								12.4	
LOS	A								В	
Approach Delay									12.4	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed:

9/30/2016

Analysis Time Period: SATURDAY PEAK HOUR

Intersection:

N. RIDGEWOOD RD & CLUB DRIVE

TWP OF SOUTH ORANGE VILLAGE

Jurisdiction:
Units: U. S. Customary
2018 PROPOSED
VOLUMES-S Analysis Year: 2018 PROPOSED
Project ID: 2018 PROPOSED VOLUMES-SAT PEAK HOUR-1613P11-20% VIA REDMOND

East/West Street:

CLUB DRIVE

North/South Street:

N. RIDGEWOOD ROAD

Intersection Orientation: NS

or, PHF te, HFR Vehicles (%) h: Exists?	/Storage Queue Len	0		/	6 0.88 6 0	0 LR	4 0.88 4 0 No 0	/
te, HFR Vehicles (%)	/Storage	0		1	0.88 6 0	1 - 6	0.88 4 0 No	1
te, HFR Vehicles (%)	/Storage	0		/	0.88 6 0	1 - 6	0.88 4 0 No	/
te, HFR Vehicles (%)	/Storage	0		/	0.88 6 0	0	0.88 4 0	/
te, HFR Vehicles (%)		0		1942	0.88	0	0.88 4 0	
te, HFR Vehicles					0.88	SAC SAC	0.88	
te, HFR					0.88		0.88	
Service:		*****			6		4	
							50 	
	L	T	R	i	L	T	R	
Movement	7	8	9	1	10	11	12	
Approach	Wes	stbound			Ea	astboun	d	
						110		
1?		*					***	
						7	•	
	0	1				1	0	
i?	OHALV.	Lucu			,			
	•	hehi			/			
	2					230		
	15. 345545							
or. PHF							and the second	
	8	205		_		210	10	
	Т	T	K	1	L	T	R	
Movement				- 1			0.70	
							The state of the s	
Aen	TCTE AOT	umes and	Adju	stme				
Veh	icle Vol	mes and	Adin	stme	nts			
	Approach Movement or, PHF te, HFR Vehicles orage ? Approach	Approach No: Movement 1 L 8 or, PHF 0.88 te, HFR 9 Vehicles 0 orage Undiv: ?	Approach Northbound Movement 1 2 L T 8 295 For, PHF 0.88 0.88 te, HFR 9 335 Vehicles 0	Approach Northbound Movement 1 2 3 L T R 8 295 Or, PHF 0.88 0.88 te, HFR 9 335 Vehicles 0 Orage Undivided 1.7 1.7 1.7 1.7 1.7 No Approach Westbound Movement 7 8 9	Approach Northbound Movement 1 2 3 L T R 8 295 Nor, PHF 0.88 0.88 te, HFR 9 335 Vehicles 0 Norage Undivided 1: No Approach Westbound Movement 7 8 9	Movement 1 2 3 4 L T R L L T R L L T R L L L T R L L L L L L L L L L L L L L L L L L	Approach Northbound Southbound Movement 1 2 3 4 5 L T R L T Sor, PHF 0.88 0.88 0.88 0.88 te, HFR 9 335 238 Vehicles 0 12 Orage Undivided / IT No No No Approach Westbound Movement 7 8 9 10 11	Approach Northbound Southbound Movement 1 2 3 4 5 6

	_Delay,	Queue	Le	ngt	n, and Leve	el of	Sea	rvice		
Approach	NB	SB			Westbound			Ē	astbound	
Movement	1	4	1	7	8	9	ī	10	11	12
Lane Config	LT		I			-	i		LR	
v (vph)	9								10	
C(m) (vph)	1328								559	
√/c	0.01								0.02	
95% queue length	0.02								0.05	
Control Delay	7.7								11.6	
LOS	A								В	
Approach Delay									11.6	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES Date Performed: 9/30/2016 Analysis Time Period: AM PEAK HOUR

Intersection: Units: U. S. Customary

2018 PROPOSED

VOLUMES-1

N. RIDGEWOOD RD & CLUB DRIVE TWP OF SOUTH ORANGE VILLAGE

Project ID: 2018 PROPOSED VOLUMES-AM PEAK HOUR-1613P12-ALL RIDGEWOOD East/West Street: CLUB DRIVE

North/South Street: N. RIDGEWOOD ROAD

Intersection Orientation: NS

		umes and		stme				
Major Street: Approach		rthbound				Southbou	und	
Movement	1	2	3	- 1	4	5	6	
	L	T	R	1	L	T	R	
Volume	1	277				364	2	
Peak-Hour Factor, PHF	0.96	0.96				0.96	0.96	
Hourly Flow Rate, HFR	1	288				379	2	
Percent Heavy Vehicles	0							
Median Type/Storage RT Channelized?	Undiv	ided			/			
Lanes	0	1				1	0	
Configuration	L	r					TR	
Upstream Signal?		No				No		
Minor Street: Approach	We	stbound		-		Eastbour	nd	
Movement	7	8	9	1	10	11	12	
	L	T	R	1	L	T	R	
Volume					6		7	
Peak Hour Factor, PHF					0.9	6	0.96	
Hourly Flow Rate, HFR					6		7	
Percent Heavy Vehicles					0		0	
Percent Grade (%)		0				0		
							24	
Flared Approach: Exists?	/Storage			/			No	/
Flared Approach: Exists?, Lanes Configuration	/Storage			/	()	NO 0	/

Approach	_belay,	Queue	ье	ngt	h, and Lev Westbound		Sei		astbound	i
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				Ì		LR	
v (vph)	1								13	
C(m) (vph)	1189								530	
∀ /c	0.00								0.02	
95% queue length	0.00								0.08	
Control Delay	8.0								12.0	
LOS	A								В	
Approach Delay									12.0	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed:

9/30/2016 Analysis Time Period: PM PEAK HOUR

Intersection:

N. RIDGEWOOD RD & CLUB DRIVE TWP OF SOUTH ORANGE VILLAGE

Jurisdiction:
Units: U. S. Customary

2018 PROPOSED Analysis Year: 2018 PROPOSED
Project ID: 2018 PROPOSED VOLUMES-PM PEAK HOUR-1613P13-ALL RIDGEWOOD

East/West Street:

CLUB DRIVE

North/South Street: N. RIDGEWOOD ROAD Intersection Orientation: NS

Major Street: Ap	proach		umes and rthbound			10	South	boun	d	
Mo	vement	1	2	3	1	4	0.000	5	6	
		L	T	R	İ	L		r	R	
Volume	•	7	483					262	7	
Peak-Hour Factor,		0.98	0.98				(0.98	0.98	
Hourly Flow Rate,		7	492				2	267	7	
Percent Heavy Veh	icles	0								
Median Type/Stora RT Channelized?	ge	Undiv	ided			/				
Lanes		0	1					L	0	
Configuration		L	r					T	R	
Upstream Signal?			No				N	lo -		
Minor Street: Ap	proach	We	stbound				Easth	ound		
Mo	vement	7	8	9	1	10]	1	12	
		L	T	R	1	L	3	2	R	
Volume						7	-		8	
Peak Hour Factor,						0.9	8		0.98	
Hourly Flow Rate,	HFR					7			8	
Percent Heavy Veh:	icles					0			0	
Percent Grade (%)			0				C)		
Flared Approach:	Exists?/S	torage			1				No	1
Lanes							0	(
Configuration							т	R		

Approach	NB	SB		-	h, and Lev Westbound			-	astbound	i
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				1		LR	
v (vph)	7								15	
C(m) (vph)	1301								510	
∀/c	0.01								0.03	
95% queue length	0.02								0.09	
Control Delay	7.8								12.3	
LOS	A								В	
Approach Delay									12.3	
Approach LOS									В	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed:

Analysis Time Period: SATURDAY PEAK HOUR

Intersection:

N. RIDGEWOOD RD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary

Analysis Year:

2018 PROPOSED

9/30/2016

Project ID: 2018 PROPOSED VOLUMES-SAT PEAK HOUR-1613P14-ALL RIDGEWOOD

East/West Street:

CLUB DRIVE

7.7

A

Control Delay

Approach Delay Approach LOS

LOS

North/South Street:

N. RIDGEWOOD ROAD

Intersection Orientation: NS

Study period (hrs): 0.25

11.7

В

11.7 B

Major Street:	Approach	hicle		thboun		is cine	ii co_	Southb	2112		
ampor ocreec.	Movement	1	NOI	2	3		4	Southb 5	ound	6	
	Movement	L		T	R	1	4 L	5 T		6 R	
		. د		1	Α.	1	7.	T		K	
Volume		9		295				21	0	10	
Peak-Hour Fact	or, PHF	0.	88	0.88				0.	88	0.88	
Hourly Flow Ra		10		335				23		11	
Percent Heavy	Vehicles	0							= 1		
Median Type/St		Un	divi	ded			1				
RT Channelized											
Lanes			0	1				1	0		
Configuration			LT					-	TR		
Upstream Signal	1?			No				No			
				45000 14 - 1500 - 10	22 220 20						
Minor Street:	Approach		Wes	tbound		18/3/19/2		Eastbo	und		
	Movement	7		8	9	1	10	11		12	
		L		T	R	1	L	T		R	
Volume							7			4	
Peak Hour Facto	or, PHF						0.8	B		0.88	
Hourly Flow Rat							7	U		4	
Percent Heavy V							Ó			0	
Percent Grade				0			U	0		U	
Flared Approach		?/Stora	are	Ü		1		U	N	io	,
Lanes			-90			,		0	0		/
Configuration								LR	U		
								717			
	Delay,	Oueue	Len	oth, ar	nd Lev	el o	f Se	rvice			
Approach	NB	SB			bound				stbo	und	
lovement	1	4	1 1	7	8	9	1	10	11		12
Lane Config	LT	12.70	i	3.	•	,	1	20	LR		12
									шк		
(vph)	10								11		
(m) (vph)	1328								54		
7/c	0.01								0.		
5% queue lengt	h 0.02								0.		
ontrol Dolass	~ ~								-		

HCS+: Unsignalized Intersections Release 5.6

Analyst: Agency/Co.: HKM

HAMAL ASSOCIATES

Date Performed: 9/30/2016
Analysis Time Period: AM PEAK HOUR

Intersection:

REDMOND ROAD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary
Analysis Year: 2016 EXISTING

Analysis Year: 2016 EXISTING
Project ID: 2016 EXISTING VOLUMES -AM PEAK HOUR-1613E15

REDMOND ROAD

East/West Street: North/South Street: CLUB DRIVE

Intersection Orientation: EW

	Veh	icle Vol	imes and	d Adii	stme	nts			
Major Street:	Approach		stbound				stbound	ì	
-	Movement	1	2	3	1	4	5	6	
		L	T	R	1	L	T	R	
Volume	***************************************	2	42				32	0	
Peak-Hour Fact	or, PHF	0.84	0.84				0.84	0.84	
Hourly Flow Ra	ate, HFR	2	50				38	0	
Percent Heavy	Vehicles	0							
Median Type/St RT Channelized		Undiv	ided			/			
Lanes		0	1				1	0	
Configuration		L	T				3	'R	
Upstream Signa	11?		No				No		
Minor Street:	Approach	No	rthbound	i i		So	uthbour	nd	
	Movement	7	8	9	1	10	11	12	
		L	T	R	1	L	T	R	
Volume						1		0	
Peak Hour Fact						0.84		0.84	
Hourly Flow Ra						1		0	
Percent Heavy						0		0	
Percent Grade			0				0		
Flared Approac	h: Exists?	/Storage			/			No	1
Lanes						0		0	
Configuration							LR		

	_Delay,	Queue	Le	engt	h, and Lev	rel of	Sei	rvice		
Approach	EB	WB			Northbour	nd		S	outhbour	nd
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				Ì		LR	
v (vph)	2								1	
C(m) (vph)	1585								912	
√/c	0.00								0.00	
95% queue length	0.00								0.00	
Control Delay	7.3								9.0	
LOS	A								A	
Approach Delay									9.0	
Approach LOS									A	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES 9/30/2016

Date Performed: Analysis Time Period: PM PEAK HOUR

Intersection:

Jurisdiction:

REDMOND ROAD & CLUB DRIVE TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary

Analysis Year:

2016 EXISTING

Project ID: 2016 EXISTING VOLUMES -PM PEAK HOUR-1613E16 East/West Street: REDMOND ROAD

North/South Street:

CLUB DRIVE

Intersection Orientation: EW

	Vehi	icle Vol	umes and	l Adju	stme	nts			
Major Street: 1	Approach	Ea	stbound			We	stbound	d	
1	lovement	1	2	3	- 1	4	5	6	
		L	T	R	1	L	T	R	
Volume		1	39		-		19	3	
Peak-Hour Factor	, PHF	0.88	0.88				0.88	0.88	
Hourly Flow Rate	, HFR	1	44				21	3	
Percent Heavy Ve	ehicles	0							
Median Type/Stor RT Channelized?	rage	Undiv	ided			/			
Lanes		0	1				1	0	
Configuration		L	T					rr	
Upstream Signal?	?		No				No		
Minor Street: A	Approach	No	rthbound	l	10 0 0	Sc	outhbou	nd	
A	fovement	7	8	9	1	10	11	12	
		L	T	R	1	L	T	R	
Volume						3		2	
Peak Hour Factor	, PHF					0.88		0.88	
Hourly Flow Rate	, HFR					3		2	
Percent Heavy Ve	hicles					0		0	
Percent Grade (9	\$)		0				0		
Flared Approach:	Exists?/	Storage			/			No	1
Lanes						0		0	
Configuration							LR		

Approach	_Delay, EB	WB	000000	9	n, and Lev Northbour				outhboun	d
Movement	1	4	1	7	8	9	- 1	10	11	12
Lane Config	LT		1				1		LR	
v (vph)	1								5	
C(m) (vph)	1604								986	
√/c	0.00								0.01	
95% queue length	0.00								0.02	
Control Delay	7.2								8.7	
LOS	A								A	
Approach Delay									8.7	
Approach LOS									A	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES 9/30/2016

Date Performed:

Analysis Time Period: SATURDAY PEAK HOUR

Intersection:

REDMOND ROAD & CLUB DRIVE

TWP OF SOUTH ORANGE VILLAGE

Jurisdiction:

Units: U. S. Customary
Analysis Year: 2016 EXISTING
Project ID: 2016 EXISTING VOLUMES -SATURDAY PEAK HOUR-1613E17
East/West Street: REDMOND ROAD

North/South Street:

CLUB DRIVE

Intersection Orientation: EW

	Vehi	cle Volu	mes an	d Adju	stme	nts			
Major Street:	Approach		stbound				stbound		
	Movement	1	2	3	1	4	5	6	
		L	T	R	1	L	T	R	
Volume		8	35				18	3	
Peak-Hour Fact		0.70	0.70				0.70	0.70	
Hourly Flow Ra	te, HFR	11	50				25	4	
Percent Heavy	Vehicles	0							
Median Type/St RT Channelized		Undivi	ded			/			
Lanes		0	1				1	0	
Configuration		LI	?				T	R	
Upstream Signa	1?		No				No		
Minor Street:	Approach	Nor	thbound	1		Son	ıthboun	d	
	Movement	7	8	9	- 1	10	11	12	
		L	T	R	1	L	T	R	
Volume						3		3	
Peak Hour Fact						0.70		0.70	
Hourly Flow Ra						4		4	
Percent Heavy						0		0	
Percent Grade			0				0		
Flared Approac	h: Exists?/:	Storage			1			No	1
Lanes						0	()	
Configuration							LR		

Approach	_Delay, EB	Queue WB	Le	ngt	h, and Leve Northbound		Sei		Southbour	nd
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				1		LR	
v (vph)	11		-						8	
C(m) (vph)	1597								970	
√/c	0.01								0.01	
95% queue length	0.02								0.02	
Control Delay	7.3								8.7	
LOS	A								A	
Approach Delay									8.7	
Approach LOS									A	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

HAMAL ASSOCIATES

Agency/Co.: HAMAL ASSOCIA Date Performed: 9/30/2016 Analysis Time Period: AM PEAK HOUR

Intersection:

REDMOND ROAD & CLUB DRIVE

Jurisdiction:
Units: U. S. Customary

2018 EXISTING
VOLUMES -TWP OF SOUTH ORANGE VILLAGE

Analysis Year: 2018 EXISTING
Project ID: 2018 EXISTING VOLUMES -AM PEAK HOUR-1613E18

East/West Street:

REDMOND ROAD

North/South Street: CLUB DRIVE

Intersection Orientation: EW

							LR		
Configuration						0)	
Plared Approach	LX1STS?	storage	1		/	707		No	/
		101	0				0		
Percent Grade			^			0		0	
Percent Heavy						1		0	
Hourly Flow Rat						0.84		0.84	
Peak Hour Facto	משם מר					1		0	
Jolume									
		L	T	R	1	L	\mathbf{T}	R	
	Movement	7	8	9	- 1	10	11	12	
Minor Street:	Approach		orthboun	-		Sou	thboun	d	
Opstream Signa.	1?		No				No		
Configuration		1	LT _				r		
Lanes		0	1				1	0	
RT Channelized						,			
Median Type/St		Undi	vided			1			
Percent Heavy	Vehicles	0							
Hourly Flow Ra		2	51				39	0	
Peak-Hour Fact	or, PHF	0.84	0.84				0.84	0.84	
Volume		2	43				33	0	
		ъ	T	R	- 1	L	T	R	
	Movement	1 L	2 T	3	!	4	5	6	
Major Street:	Approach		astbound	-			stbound		
Marian Chasata	ven		lumes ar		stme				

Approach	_Delay, EB	WB	ьe	ngt	h, and Lev Northbour		Sei		outhbour	nd
Movement Lane Config	1 LT	4	1	7	8	9	l	10	11 LR	12
v (vph)	2								1	
C(m) (vph)	1584								910	
v/c	0.00								0.00	
95% queue length	0.00								0.00	
Control Delay	7.3								9.0	
LOS	A								A	
Approach Delay									9.0	
Approach LOS									A	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed: Analysis Time Period: PM PEAK HOUR

9/30/2016

Intersection:

REDMOND ROAD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Units: U. S. Customary
Analysis Year: 2018 EXISTING

East/West Street:

Project ID: 2018 EXISTING VOLUMES -PM PEAK HOUR-1613E19 REDMOND ROAD

North/South Street:

CLUB DRIVE

Intersection Orientation: EW

Intersection of	Tentacion:	EW			study	per.	lod (nrs	1): 0.7	25
	Veh:	icle Vol	umes an	d Adjı	ıstme	nts			
Major Street:	Approach	Ea	stbound	-		- 7	Vestboun	ıd	
	Movement	1	2	3	1	4	5	6	
		L	T	R	1	L	T	R	
Volume		1	40				19	3	
Peak-Hour Facto	r, PHF	0.88	0.88				0.88	0.88	3
Hourly Flow Rat	e, HFR	1	45				21	3	
Percent Heavy V		0							
Median Type/Sto RT Channelized?		Undiv	ided			/			
Lanes		0	1				1	0	
Configuration		L	T					TR	
Upstream Signal	?		No				No		
Minor Street:	Approach	No	rthboun	d		S	outhbou	nd	
	Movement	7	8	9	1	10	11	12	
		L	T	R	1	L	T	R	
Volume						3		2	
Peak Hour Facto						0.88		0.88	
Hourly Flow Rat						3		2	
Percent Heavy V						0		0	
Percent Grade (0				0		
Flared Approach	: Exists?/	Storage			1			No	/
Lanes						0		0	
Configuration							LR		
	Dolan o	7							
Approach	Delay, Q EB	ueue Ler WB		id Lev hboun		f Ser		a la la1	
Movement	1	4 1	7	8 1100m	a 9			thbound	
Lane Config	ī.T	- !	,	0	9	!	10	11	12

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES 9/30/2016

Date Performed:

Analysis Time Period: SATURDAY PEAK HOUR
Intersection: REDMOND ROAD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Approach Delay

Approach LOS

Units: U. S. Customary
Analysis Year: 2018 EXISTING

Project ID: 2018 EXISTING VOLUMES -SATURDAY PEAK HOUR-1613E20 East/West Street:

REDMOND ROAD

North/South Street: CLUB DRIVE

Intersection Orientation: EW

Study period (hrs): 0.25

8.7

				•	Jeau	PCL	104 (111	3). 0.	23
	Ve		lumes an		ıstme	nts_			
877	pproach		astbound			1	Westbou	nd	
M	ovement	1	2	3	ł	4	5	6	
		L	T	R	1	L	T	R	
Volume		8	36				18	3	
Peak-Hour Factor	, PHF	0.70	0.70				0.7		0
Hourly Flow Rate	, HFR	11	51				25	4	-
Percent Heavy Vel		0							
Median Type/Store		Undi	vided			/			
RT Channelized?						,			
Lanes		0	1				1	0	
Configuration		_	LT				-	TR	
Upstream Signal?			No				No	***	
							NO		
	pproach		orthbound	d			Southbo	und	
Mo	ovement	7	8	9	1	10	11	12	
		L	T	R	1	L	T	R	
Volume						3		3	
Peak Hour Factor,	PHF					0.70	1	0.70	n
Hourly Flow Rate,						4	•	4	
Percent Heavy Vel						0		0	
Percent Grade (%)			0			U	0	U	
Flared Approach:	Exists?	/Storage			1		U	37.0	1
Lanes	2.12000.	, ocorage	-		,	0		No 0	/
Configuration						U		0	
							LR		
	Delay	Ouene T	anoth an	d Ta-	-1	e c-			
Approach	Delay,	WB	ength, an	hboun		Ser		ithbound	,
fovement	1	4 1	7	8 1momr	9	1	10	11	12
Lane Config	LT	- 1	,	U	9	1	10	LR	12
		1				1		אייר	
(vph)	11							8	
(m) (vph)	1597							970	
7/c	0.01							0.01	
5% queue length	0.02							0.02	
ontrol Delay	7.3							8.7	
os	A							Α.	
nnreach Delan	0.0							n	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.: HAMAL ASSOCIATES
Date Performed: 9/30/2016 Analysis Time Period: AM PEAK HOUR

Intersection: REDMOND ROAD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Jurisdiction.
Units: U. S. Customary
Palvsis Year: 2018 PROPOSED

Project ID: 2018 PROPOSED VOLUMES -AM PEAK HOUR-1613P15-W/20% REDMOND

East/West Street:

REDMOND ROAD

North/South Street: CLUB DRIVE

Intersection Orientation: EW

			-		od (nrs	,	
ehicle Vo		Adju	ıstme				
121		83		We		i	
N 157			1	4		6	
L	T	R	1	L	T	R	
2	43				33	0	
0.84	0.84				0.84	0.84	
2	51				39	0	
0							
Undi	vided			1			
				•			
0	1				1	Ω	
						V.=	
	No				No		
No	orthbound			Sc	uthbour	nd	
7	8	9	1	10	11	12	
L	T	R	ĺ	L	T	R	
			-	1		2	
	0				0	v	
?/Storage			1		U	No	,
			,	0			,
				•	LR	•	
	2 0.84 2 0 Undi:	Eastbound 1	Eastbound 1	Eastbound 1	1 2 3 4 L T R L L L L L L L L L L L L L L L L L L	Eastbound Westbound 1	Eastbound Westbound 1

Approach	_Delay, EB	Queue WB	Le	ngt	h, and North	l of	Ser	vice	Southbound	i i
Movement Lane Config	1 LT	4	1	7	8	9	1	10	11 LR	12
v (vph)	2								3	
C(m) (vph)	1584								992	
∀/c	0.00								0.00	
95% queue length	0.00								0.01	
Control Delay	7.3								8.6	
LOS	A								A	
Approach Delay									8.6	
Approach LOS									A	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed: Analysis Time Period: PM PEAK HOUR

9/30/2016

Intersection:

Jurisdiction:

REDMOND ROAD & CLUB DRIVE

Units: U. S. Customary

TWP OF SOUTH ORANGE VILLAGE

Analysis Year:

2018 PROPOSED

Project ID: 2018 PROPOSED VOLUMES -PM PEAK HOUR-1613P16-W/20% REDMOND

East/West Street: North/South Street: CLUB DRIVE

REDMOND ROAD

Intersection Orientation: EW

	Veh	icle Vo	lumes an	d Adjı	stme	nts			
Major Street:	Approach	E	astbound			We	estbound	i	
	Movement	1	2	3	1	4	5	6	
		L	T	R	1	L	T	R	
Volume		3	40				19	3	
Peak-Hour Fact		0.88	0.88				0.88	0.88	
Hourly Flow Ra	te, HFR	3	45				21	3	
Percent Heavy	Vehicles	0							
Median Type/St		Undi	rided			/			
RT Channelized						,			
Lanes		0	1				1	0	
Configuration		1	T				100	'R	
Upstream Signa	1?		No				No	21	
Minor Street:	Approach	No	rthbound	i		Sc	uthbour	ıd	
	Movement	7	8	9	1	10	11	12	
		L	T	R	1	L	T	R	
Volume					-	3		3	
Peak Hour Fact	or, PHF					0.88		0.88	
Hourly Flow Ra	te, HFR					3		3	
Percent Heavy	Vehicles					0		0	
Percent Grade	(%)		0			U	0	U	
Flared Approac		Storage			,		U	No	,
Lanes					,	0		NO 0	/
Configuration						U	LR	U	
							אנג		

Approach	_Delay, EB	Queue WB	L€	engt	h, and Lev Northboun		Sex		outhbour	nd
Movement	1	4	1	7	8	9	1	10	11	12
Lane Config	LT		1				İ		LR	
v (vph)	3								6	
C(m) (vph)	1604								993	
v /c	0.00								0.01	
95% queue length	0.01								0.02	
Control Delay	7.2								8.6	
LOS	A								A	
Approach Delay									8.6	
Approach LOS									A	

HCS+: Unsignalized Intersections Release 5.6

Analyst:

LOS

Approach Delay Approach LOS

A

HKM

Agency/Co.:

HAMAL ASSOCIATES

Date Performed:

9/30/2016

Intersection:

Analysis Time Period: SATURDAY PEAK HOUR

REDMOND ROAD & CLUB DRIVE

Jurisdiction:

TWP OF SOUTH ORANGE VILLAGE

Jurisdiction:
Units: U. S. Customary

2018 PROPOSED

Analysis Year: 2018 PROPOSED
Project ID: 2018 PROPOSED VOLUMES -SAT PEAK HOUR-1613P17-W/20% REDMOND East/West Street:

REDMOND ROAD

North/South Street:

CLUB DRIVE

Intersection Orientation: EW

Study period (hrs): 0.25

A

8.7 A

V-1	Ve	ehicle Vo	lumes and	d Adj	ustme	nts_			
Major Street:	Approach		astbound			1	Westbour	nd	
	Movement	1	2	3	1	4	5	6	
		L	T	R	ł	L	T	R	
Volume		9	36				18	3	
Peak-Hour Fact		0.70	0.70				0.70		1
Hourly Flow Ra	te, HFR	12	51				25	4	•
Percent Heavy	Vehicles	0						-	
Median Type/St	orage	Undi	vided			/			
RT Channelized						,			
Lanes		0	1				1	0	
Configuration			r				7	TR	
Upstream Signa:	l?	-	No				No	TT	
							NO		
Minor Street:	Approach	No	rthbound	ì		5	Southbou	ınd	
	Movement	7	8	9	- 1	10	11	12	
		L	T	R	ì	L	T	R	
								7.35	
Volume						3		4	
Peak Hour Facto	or, PHF					0.70		0.70	
Hourly Flow Rat	ce, HFR					4		5	
Percent Heavy V	Vehicles					ō		0	
Percent Grade (0				0	-	
Flared Approach	: Exists	?/Storage			1		7	No	1
Lanes						0		0	
Configuration							LR	35	
	Delay.	Queue Le	nath =n	d Le-	ol of		-4		
Approach	EB	WB	Nort	hboun	GT OI	ser		·	
fovement	1	4 1		8	9	ř		thbound	
ane Config	LT	- 1		U	9	- 1	10	11	12
		ı				ŀ		LR	
(vph)	12							9	
(m) (vph)	1597							976	
/c	0.01							0.01	
5% queue lengtl								0.01	
ontrol Delay	7.3							8.7	
OS								0.1	

							1000	4	0/00.1	1.00%	2.00%	1.00%	4.00%	200		1.00%	1.00%	7.00%	1.00%	1.00%	1.00%	1 00%	2 250/	4 000/	1,000	1.00%	2 250/	0/.67%
							Collector	4 500/	200.	200.	%0C.	1.00%	1 00%	2000	4.00%	300.1	%0¢.1	4.00%	1.00%	1.50%	2.50%	1.50%	2 00%	1 00%	2000	2 50%	1 50%	0/0000
		7100	1707		AN	NG:	Arterial	4 00%	/ EDO.	1.30%	4 000%	1,00%	100%	(4 FOO)	000		0,000	4.00%	1.00%	1 00%	2.00%	1.50%	1.50%	1 50%	1 50%	1 00%	1.50%	200%
	Ä	- Anril	1		URBAN	Principal	Arterial	1.50%	1 00%	1 50%	400%	1 00%	2.00%	2 00%	1 00%	1.00%	1 500%	1.30%	1 50%	1.00%	1.50%	1.00%	1.00%	1.00%	1.00%	1.50%	1.50%	1.50%
	E TABLE	0	2				Freeway	2.50%	1.50%	1 00%	1 00%	1.50%	1.00%	1 00%	1 00%	2 50%	1 00%	1.00%	1.50%	1.50%	1.00%	1.00%	1.50%	1.00%	A/N	1.00%	1.50%	1.00%
PERMIT	H RATE	submitted April	T	SILICATION			Interstate	N/A	2.00%	1 00%	1.00%	NA	N/A	2.00%	2.00%	2 00%	1 50%	1 00%	1.50%	1.50%	1.50%	1.50%	2.00%	2.00%	1.50%	NA	2.00%	1.50%
	GROWTH	ubmitte	ional Class	Talication Classification			Local	1.00%	N/A	3.25%	1.00%	1.00%	1.00%	A/N	1.00%	A/N	1.00%	1.50%	1.00%	1.00%	1.00%	1.00%	N/A	1.50%	1.00%	1.00%	N/A	1.00%
T ACCESS	BACKGROUND	Permits s	Finne	200		Minor	Collector	1.00%	N/A	1.50%	1.00%	1.50%	1.00%	N/A	1.00%	N/A	2.50%	1.50%	1.25%	2.00%	2.00%	3.25%	N/A	1.00%	1.50%	3.25%	N/A	2.50%
NJDOT		Access Pe		ΙΦΙ		Major	Collector	1.50%	N/A	2.50%	1.00%	1.00%	1.00%	N/A	1.50%	A/N	2.00%	1.00%	1.00%	2.00%	2.00%	2.50%	N/A	1.00%	2.00%	3.00%	N/A	2.00%
	ANNUAL	NJDOT A		RIRAI		Minor	Arterial	1.50%	N/A	2.00%	1.00%	1.00%	1.00%	N/A	1.00%	A/A	1.50%	1.00%	1.50%	1.00%	1.50%	1.50%	N/A	1.50%	1.50%	1.50%	N/A	2.00%
		Valid for			Other	Principal	Arterial	2.00%	A/A	2.00%	2.00%	1.50%	1.00%	N/A	1.00%	N/A	1.50%	1.00%	1.50%	1.50%	1.50%	1.50%	N/A	1.00%	1.50%	2.00%	N/A	2.00%
		Va					Interstate	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.75%	N/A	1.00%	1.50%	1.50%	1.50%	1.00%	2.00%	A/A	2.50%	1.50%	1.00%	N/A	1.50%
							COUNTY	Atlantic	Bergen	Burlington	Camden	Cape May	Cumperland	Essex	Gloucester	Hudson	Hunterdon	Mercer	Middlesex	Monmouth	Morris	Ocean	Passaic	Salem	Somerset	Sussex	Union	Warren

NOTE: For use in short term (within 1-3 years) background growth ONLY.

Example: Assume existing condition is 1,500 peak hour trips and the applicable growth rate is 2%. The multiplication factor for 2% compounded for 3 years is 1,0612. The three-year peak hour trips. [1592 = 1500(1+0.02)³ = 1500(1.0612)]

Future Growth (compounded) = Present Growth * (1+Growth Rate) # of years

intersection is located on a 4 percent upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s, equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in Table 9-6. Figure 9-17 includes design values, based on the time gaps for the design vehicles included in Table 9-5.

No adjustment of the recommended sight distance values for the major-road grade is generally needed because both the major- and minor-road vehicle will be on the same grade when departing from the intersection. However, if the minor-road design vehicle is a heavy truck and the intersection is located near a sag vertical curve with grades over 3 percent, then an adjustment to extend the recommended sight distance based on the major-road grade should be considered.

Table 9-6. Design Intersection Sight Distance—Case B1, Left Turn from Stop

Design Speed (km/h)	Stooping Sinks	Distan Passeng		Design	Stopping	Intersection Sight Distance for Passenger Cars			
	Stopping Sight Distance (m)	Calculated (m)	Design (m)	Speed (mph)	Sight Distance (ft)	Calculated (ft)	Design		
20	20	41.7	45	15	80	165.4	(ft)		
30	35	62.6	65	20	115	220.5	170		
40	50	83.4	85	25	155		225		
50	65	104.3	105	30	200	275.6	280		
60	85	125.1	130	35	250	330.8	335		
70	105	146.0	150	40		385.9	390		
80	130	166.8	170	45	305	441.0	445		
90	160	187.7	190		360	496.1	500		
100	185	208.5		50	425	551.3	555		
110	220	229.4	210	55	495	606.4	610		
120	250		230	60	570	661.5	665		
130	285	250.2	255	65	645	716.6	720		
=+		271.1	275	70	730	771.8	775		
_				75	820	826.9	830		
	ection sight distance			80	910	882.0	885		

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3 percent or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

Sight distance design for left turns at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided-highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehicle with a clearance to the through lanes of approximately 1 m [3 ft] at both ends of the vehicle, no separate analysis for the departure sight triangle for left turns is needed on the minor-road approach for the near roadway to the left. In most cases, the departure sight triangle for right